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. - GEOMETRIC CHARACTERIZATION OF EIGENVALULES OF
COVARIANCE MATRIX FOR TWO

-SOURCE ARRAY
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S.1. Chon
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Abstract

For a two-source array processing scenario, normalized
cigenvalues’ expressions Ay and Az are reduced to forms de-
pending only on a real triplet: phase-dependent variable £,
phase-independent variable n, and power ratio 7+, (€,1) is
confined to an isosceles-like region. We characterize

e this isosceles-like regionr and the many-to-one mapping
from the Cartesian product of the temporal and spatial
correlation unit-disks onto this region,

e the behavior of the eigenvalues and their ratio as func-
tions of the real triplet with respect to array processing,
and

e a characterization of Speiser’s eigenvalue bounds spe-
cialized to the two source scenario.

1. Introduction

The ecigenvalues play a central role in parametric sig-
nal subspace fitting methods, in many versions of non-
parametric subspace beamforming, and in applying the
rank-reduction principle to subspace array processing.

Very scanty discussion of the eigenvalue expressions not
restricted to the simple uncorrelated arrivals was given in [1]
for two-source array processing. The ecigenvalues are solu-
tions of a quadratic equation but they depend on 6 real pa-
rameters, i.c., with 4 from the spatial and temporal complex
corrclations and 2 from the power levels of the arrivals.

A companion paper[2] contains minimum mathemat-
ical development but concentrates on the overview of the
problem, graphic display, physical interpretation of results.
This paper provides some dctails on which the companion
paper is based and then characterize Speiser’s eigenvalue
bounds[3] specialized to the two source scenario.

We give special treatment for equal power arrivals he-
cause of its many unique characteristics and its importance
in real applications.

The analytical trcatiient beging by reviewing the ex-
pressions of the noise-free eigenvalues of the quadratic char-
acteristic equations of the non-Hermitian product of the
temporal and spatial correlation matrix given in Hudson’s
text(l, pp. 52-55]. The cigenvalues are normalized with re-
spect to the product of the number of sensors and the sen-
sor level power of the weaker source mg, t.e., my > 7. The
normalized large and small eigenvalues expressions Ay and
Mg are reduced to forms depending only on the real triplet
(§,m I). Here, 7t is the power ratio between the strong
to wear( sources at the sensor level. The real pair (§,7) are
defined in terms of the normalized temporal and spatial co-
efficients p and ¢ respectively with each constrained tc a
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unit-disk through
n= (1= 1611 = o),

£ = Re(pg*) = olld| cos(arg p — arg 6).

Using our notation, tlie normalized cigenvalues assume the
following form

(3)

+1+(—) 25]

B =

41
1+ 1— (30 =1
+1+(§§)%2£]

X

While the discussions of eigenvalues in this report are
applicable to generic steering vectors, we call 5 the phase-
independent variable and £ the phase-dependent variable for
convenience even though such names were motivated by the
special case of plane waves impinging onto pairwise sym-
metric arrays.

2. An Isosceles Right-Triangle-Like Region

The phase-independent variable 5 depends only on the
magnitude of p and ¢. The phase-dependent variable £ de-
pends also on the angular positions of p and ¢. The mapping
from the complex pair (p, ¢) to the real pair (£, 1) is many to
one. T'he range of this mapping is an isosceles right-triangle-
like region bounded on its left and right by two symmetric
parabolas, n = (£ £ 1), and down below by a straight base-
line, = 0. We note the zero slope of each parabola where
it meets the straight line and the 90° angle that the two
parabolas intersect each other.

We will see later that among the three parameters
{€,17, 7 /m2) appearing in the eigenvalues’ expressions, 7 is
the most important one.

The two eigenvalues are equal if and only if what is in-
side the radical of the eigenvalue equation vanishes. It can

be shown that for this to be true we must have my/mp = 1.

and that € and 5 nmst be on the left parabola of the
isosceles-like region. The common eigenvalue value they

share is
X6, (1+6)") = (149 = V7.
3. Characterizing Eigenvalues and their
Ratio

We characterize the behavior of the eigenvalues and
their ratio%‘; as functions qf the real triplet &n ) It is
useful to discuss the expressions for thc eigenvalue and their
ratlo for the special cases at the apex, the baseline, and
the vcrtlcal axis. But instead, we characterize the special

01713
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case of cqual-strength arrivals and then the general case will
be touched upon only lightly at the end.

Eigenvalues

The small eigenvalue will be seen to diminish qualita-
tively and quantitatively for two-arrival scenarios increns-
ingly stressed with high temporal and/or spatial corrcla-
tions. The special case of equal strength ;1 = 0 dB arrivals,
also important in low—angle radar trackmg, shares many rich
structures of general 72. Tt has several additional unique

fcatures for signal cigenvalues' ratio }‘; important in array
processing.

The special case of equal strength = —L = 0 dB arrivals
shares the following common features of general > power
ratios: straight line contours for constant cigenvalue A's, hy-
perbciic A slices for constant phase-independent variable 7’s,
and parabolic A slices for constant phase-dependent variable
&’s. Tlowever, we caution that unless special effort is made
in plotting results, the two displayed surfaces or curves may
not always meet at the supposed places. This is because the
boundary curves defining parabolas in the £ and 5 plane, in
general, do not pass through the grid points used in the
and 75 plane.

As n approaches 0, the small cigenvalue Ay and the
cigenvalue ratio % tend toward — and + oo dB, respectively.
Similarly, as n approaches 0 for the equipower case, E‘,L =0
dB, both the upper Ay and lower A2 hyperbolas tend toward
their asymptotes intersceting at —oco dB.

One can use plots to give some indieation of the &-
dependent nature of the eigenvalues. But it is possible to
analyze the same phenomenon for the most important arca.
As the n = 0 baseline is where A2 = 0, we have more quanti-
tative information about the £-dependent or é-independent
nature of Ay in this neighborhood for given values of It
because of the following characterization. For given £ and
%‘; = 1, as for all other values, the stress of a direction-
finding scenario is highest when the baseline 5 is approached.
We are interested in the local behavior at the stressful re-
gion about n = 0. In this region, the large eigenvalue A
will not change much in terms of its order of magnitude.
This is not the case for the small eigenvalue A,, as it is the
difference of two nearly equal numbers. The local first-order
approximations to A; and Az near n = 0 are therefore

/\1(5'71) =~ A1(510) = 2(1 +£)1

.
2(1+€)°

v; 0 and at the three particular € values, we have for

A'.’(Ev 7)) =

npz

. n
Na(=1,) & oon, Aa(0,m) & 2, Aa(Lm) ~ 2.

This indicate the significant é-dependence of A,.
Near n = 0 and for large 7*, we have instead

M(E ) = A (€,0) = };— +1+ ,/% 2%,

’\2(6,77) =7,

i.c., essentially £-independent.

Eigenvalue Ratio
We need to know the shape of the contours of the cigen-
value ratio %* =1, ie.,
2

L VAR

)\2—1—\/‘_

where |/~ assumes the expression from equation 1. This is
equivalent to
A58y L
7= z
. . ({+1)?
T+ ()52
For the special case of equal strength -:—t = 0 dB,

the contours of the cigenvalue ratio 3‘\1; = [ form a onc-
parameter family of parabolas having their vertices colo-
cated at (£,n) = (—1,0), i.c., at the lower left corner of the
isosceles-like triangle and their common tangent the baseline
n=0. ! This family of parabolas includes the left bound-
ary of the isosccles-like triangle and the bascline. Because
the contours of the cigenvalue ratio %l = [ pass through
the lower left corner of the isosceles-like triangle, this cor-
ner i1s a point of discontinuity for the eigenvalue ratio X‘L
for the special case of equal strength ;‘; = 0 dB. Tor ex-
ample, the two cigenvalues are equal over the left parabolic
boundary of the isosceles right-triangle-like region. Further-
more, the two equally dominant eigenvalues go down Lo zero
Jjointly so thai the condition munber stays as unity through-
out. That is, the condition numbers are the lowest possible
there. lowever, both ecigenvalues tend to zero as 7 tends
to zero, i.e., the bascline of the region. The limit of
approachmg from the baseline of the isosceles region is oo
while that approaching from the left houndary curve of the
isosceles region is 0.

For the equi-powered case, the destructive interference
scenario point is at the left apex of the isosce!es region. Both
mgenvalues are zero and the eigenvalue ratlo at this point
is of the 0/0 form. This point corresponds to he total can-
cellation of signals at the sensor element level. The total
cancellation happens not only at the center of the array but
at every sensor. The two steering vectors coincide and the
temporal waveforms negate each other completely. Con-
sider two strong sources behaving this way. As the power is
measured by turning off one source at a time, so the equal
powcr arc considered as high and CRLB and asymptotic
results apply when noise is taken into consideration.

We focus attention to the condition number’s behavior
over the vertical axis £ = 0 of the isosceles region. For the
specinl case of equal strength ;1 = 0 dB, there is an extra
6 dB for signal eigenvalues’ ratio XL over the vertical axis
&€ = 0 accounting for the presence of an infinite slope of A's
with respect to 1 at the apex for the equal-power arrival
case. This is reflected in the following two approximations.

When % > 1, we first approximate the radical expres-

sion as
A(E)m _21
T ” ~

1For the general case, i.e., ’—’% > 1, this common vertey is moved to

the l=ft from (~1,0) and is now outside of the isosceles-like region.

—
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“T'hen the ratio i* I given approximately by
. 4

2
N _l+y 2TE m

S TR PR
Ag—l—f~ - 1~7r2/n'

£

)
That means the stress from 5 and 2* is multiplicative (di-
visive) in the direct scale. In dB scale, this is additive, i.c.,

when {—: > 10 dB, we have

A dB) & (LY (in dB) — nin dB).
Az T

When

It~ 1, we have
X3

M 1+VT=n_ (Q+VT=-7m?_ 2-n+2/T-9 4

X 1-T=y 1-(1-n) ~ ) )

We used n < 1 in the last step. When % ~ (0 dB and 51s
less than 0.10 (or -10 d13), we have

;l(in dB) = —n(in dB) + 6.
2

The variation of signal eigenvalue ratio % across the
phase-dependent variable £ is not significant. For the special
case of equal strength }’; = 0 dB, there is a 4-time or 6 dB

increase on the cigenvalue ratio f’; for highly correlated cqui-
power arrivals both temporally and spatially from changing
the phase of the source correlation or the angle difference
between the two unit-disk vectors from 90° to 0°.

As power ratio % increases from unit value, the vari-
ation of the large eigenvalue A; is essentially along the di-
rection of the horizontal phase-dependent variable £. The
smaller cigenvalue Ag is independent of both the horizon-
tal phase-dependent variable £ and Il necar the bascline
for large 7> but is a strong function of the vertical phase-
independent variable 7. The effect of % is essentially only
felt by the large eigenvalue which is not sensitive to whether
the scenario’s (€, n) coordinate is close to the basecline, ie.,
whether the arrivals are correlated or close to each other as
far as its order of magnitude is concerned.

We have used these results for assessment of scenarios
in [4] from which this paper and [2] are excerpted.

4. Specializing Speiser’s Eigenvalue Bounds
to Two Sources

As we have the exact expressions of the eigenvalues for
the two-source scenario, we can examine quantitatively some
general multisource results by specializing them to this case.
For example, we consider the singular value bounds derived
by Speiser and Arnold[3] for the product of two square ma-
trices. Specialized to the two-source scenario and in terms
of eigenvalues in our context, his expression can be written
as

o3(P)o3(¥) < Az < min [03(P)o}(¥),0}(P)o3(¥)]

where
o =P 1 ¢
P= , ¥= . ,

and @ (W) s the i-th Inrgest cigenvalue of the Hermitian
matrix ¥, and A; = o2(P¥). It is easy to sce that o(¥) =
1+[¢|. This corresponds to A; for the special case £ = 0, i.e.,
at the vertical axis, with P being identity, the temporally
uncorrelated equal-powered arrival case. We also have

m e
TN [P el |

This corresponds to A; for the special case £ =0, i.c., at the
vertical axis, with ¥ being identity, the spatially orthogonal
arrival case.

Given these algebraic expressions, we now interpret
their physical significance. The threce main sources for the
signal eigenvalue spread or causes for small signal eigenval-

o3(P) =

- ucs are the high spatial correlation ¢ due to narrow spatial

separation between two arrivals, the high temporal correla-
tion p because of multipaths, and the high strength contrast
%. We note that ¢ appears in ¥, p and E—'; in P. Speiser’s
cigenvalue bounds for the product of two matrices tell us
that if we know the cigenvalues of ¥ and P, then we can
bound the eigenvalues, Ay = o3(P¥), of the product matrix.
Stated loosely, if we know the partial stress from spatial cor-
relation alone and that from temporal correlation together
with the power contrast, we can bound the joint stress from
all of the above combined sources. From the above expres-
sions, we know that the partial stresses o3(¥) and o3(P)
depend on ¢ and p constrained on the two unit-disks only
through their magnitudes, i.c., radii, but nou the angular
positions. Yet the combined stresses A = o2(PV¥) depend
also on the relative phasor positions. Recognizing the na-
ture of the many-to-one mapping from (p, ¢) to (£, n) which
appeared in the eigenvalue formulas, we note that the rela-
tive phasor positions appeared only in the phase-depend~nt
variable £.

For given |p| and |¢|, we have n = (1 — [¢|*}(1 - |p|*)
and [€lmax = 1p||¢|- Tt is of interest to see whether Speiser’s
uprer and lower bounds for A, coincide with
Aa(=1oll6 (1 = 16P)(1 ~ |pl?)) and
Xa(lollel, (1 = |61%)(1 = |p|?)). We also like to know whether
these bounds are tight or loose as the scenario points range
over the isosceles region for the equipowered arrival }1; =1
case and the large power-ratio case.

For the Special Equipower Case % =1

For }: = 1, Speiser’s expre s.on states that

(1=1pD(1 = ¢') < A2
min [(1+ [6))(1 = [p), (1 = [8[)(1 + |o])]
(1= loll¢l) = | Irt = lot 1.

These bounds have exactly the same expressions for A,
at the end points of the permissible £-interval between

(=lellél. (1 = 1oI*)(1 = 1p[?)) and (lpllg], (1= 1#1*)(1 = 1p}*))

when 72 =1 as shown in the following.

For a given n value and -:-; = 1, as £ varies {rom the
left edge of tt.e permissible €-interval to the midpoint and
then to the right edge, A decreases from

Ma(=lplll, (1 — [81)(1 = 1oI*))
(1= lplloh) = V(1 = 1pll6D)? — (1 = 162)(1 = |o[?)
(1= lpligl) — Hol - 1411,

IA




"to

A2(0, (1= 1o)X = 1p*)) = 1 = VT = (1 = &) (1 = [p[?),

to

Aa(lpllgl (1 = 16131 = 1p]®)
(14 Ipli¢l) = V(1 + IplleD)z = (1 = [8]2)(1 — )
(1+ [pli#]) = Upl + 18D = (1 = |41 = |p]).

So for I =1, Speiser’s two bounds for the equipower
case can be identificd as the eigenvalue values at the
two extreme ends of the permissible phase-dependent vari-
able €-interval. This €-interval is on the constant phase-
independent n horizonta! line of the isosceles region with
all expressions calculated from the magnitudes of p and ¢
only. For given n, the permissible £-interval attains its maxi-
mum width when the £-interval extends from the left- to the
right-boundary parabola. The length of such maximum §-
interval increases with decreasing 7, i.e., when the baseline
is approached. The bounds for the small eigenvalue may
be loose when there is considerable variation of the order
of magnitude of the small eigenvalue along the maximum
£-interval.

For the General Power Ratio }:

Case

For the general I+ case, Speiser’s expression can be
similarly arranged as No.0A 6mm

()1 =1p*)
\/ ﬁ)—] < A
1 m ( IpIZ)
S§(E+1){1—(¢(\/ (_1+]

4(2)(1 = |p|2
‘w—\/l— (21— 1)

(3 +1)2
Note these bound expressions involve only the absolute
magnitude of the two phasors on the two unit-disks, ie.,
only the radius but not the argument of the phasors. They
are not exphcitly dependent on the other parameter

l‘Tl

(1-1¢h3 (~+ 1)

€ = Re(pé”) = |pl|@] cos(arg p — arg &),

which is the inner product of these two phasors and con-
sequently contains relative phase information between the
two. But as before, for given |p| and |¢|, we have

1= (1= [¢|2)(1 - |pl?) and |£|max = |p|l#]. Therefore, as
in the preceding subscction for the equipower case % =1,
we can draw the conclusion a priori that these bound ex-
pressions at vbest bound the lower part of the truncated hy-
perbola in £ and A over the permissible phase-dependent
variable £-interval corresponding to the given value of

= (1= 1¢1*)(1 = |pl*).

For given value of ZX, the exact cigenvalues depend on
the two complex phasors on the unit-disks, p and ¢, through
the two derived bounded real numbers £ and n. In contrast,
the two bounds’ expressions involve the magnitude of the
two phasors, 1.e., two different real numbers. Therefore, it

15 much sunpler to browse the hyperbolie slice plots to vi-
sualize the best non-explicitly €-dependent bounds one can
possibly have than to analyze the particular bounds derived
by Speiser. From our early characterization of the A sur-
faces, we know that the dependence of A3 on € becomes
more insignificant as I+ gets large. We expect that such
€-independent bounds perforn better in this region. Natu-
rally we must bear in mind that the original form of these
bounds are applicable to the general multisource arrival sce-
nario and they mny serve some useful purpose there,

5. Conclusion

The main contribution of this work is a manageable
presentation of a compact map showing the three functions,
At, Ag, and %, over all possible scenarios. This enables one
to sce the relative positions among different scenarios. We
also present some easy-to-remember formulas that enable
one to exercise back-of-envelope assessment of scenarios.

We also characterize Speiser’s eigenvalue bounds spe-
cialized to the two source scenario. These bound expressions
involve only the absolute magnitude of the two phasors on
the two unit disks, t.c., only the radins but not the argument
of the phasors. Interestingly enough, lhis two hounds for the
equi-power case can be identified as the eigenvalue values
at the two extreme ends of the permissible phase-dependent
variable £€-interval on the constant phase-independent n hor-
izontal line of the isosceles region with all expressions cal-
culated from the magnitudes of p and é only. For given 7,
the permissible &-interval attains its maximum width when
the {-interval extends from the left to the right boundary
parabola. The length of such maximum £-interval increases
with decreasing n, i.c., when the bascline is approached. The
bounds for the small cigenvalue may he loose when there is
considerable variation in the order of magnitude of the small
eigenvalue in the phase-dependent variable §. For large = —L
the smaller eigenvalue Ay becomes more independent of the
horizontal phase-dependent variable ¢, the bounds will get
tighter. That is, there is less information loss by neglecting
the phase-dependent variable £.
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